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Figure 1. We propose INS-Conv, an incremental sparse convolutional network, which enables online accurate 3D semantic and instance
segmentation. We generate semantic and instance labels along with 3D reconstruction, which is valuable for interactive AR/VR and
robotics applications.

Abstract
We propose INS-Conv, an INcremental Sparse

Convolutional network which enables online accurate
3D semantic and instance segmentation. Benefiting from
the incremental nature of RGB-D reconstruction, we only
need to update the residuals between the reconstructed
scenes of consecutive frames, which are usually sparse.
For layer design, we define novel residual propagation
rules for sparse convolution operations, achieving close
approximation to standard sparse convolution. For network
architecture, an uncertainty term is proposed to adaptively
select which residual to update, further improving the
inference accuracy and efficiency. Based on INS-Conv,
an online joint 3D semantic and instance segmentation
pipeline is proposed, reaching an inference speed of
15 FPS on GPU and 10 FPS on CPU. Experiments on
ScanNetv2 and SceneNN datasets show that the accuracy
of our method surpasses previous online methods by a large
margin, and is on par with state-of-the-art offline methods.
A live demo on portable devices further shows the superior
performance of INS-Conv.
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1. Introduction

3D semantic and instance segmentation aims to detect
objects of a 3D scene and provide per point semantic pre-
diction simultaneously, which is fundamental to robotics or
AR/VR applications. Recent methods [4, 8, 12, 13, 16, 26]
that focus on offline 3D segmentation have shown great
improvements in terms of segmentation accuracy, where
sparse convolutional networks are widely used as back-
bones to extract 3D features [8, 12, 16]. While these offline
methods achieve leading accuracy, they may take up to sec-
onds to make a single update, because their backbone net-
works usually require global geometry as input, which can-
not meet the online segmentation purpose, e.g., real-time
interaction of AR agents with the surrounding environment.

For the task of online 3D segmentation, a common so-
lution is the 2D-to-3D approach, which means to perform
2D convolutions on RGBD frames, followed by projecting
the 2D predictions to 3D space and fusing with the pre-
vious results via a probabilistic model [18, 20, 22]. These
methods utilize 2D information merely, leading to low seg-
mentation accuracy. Although recent methods achieve im-
provements by using 3D point convolution to process 2D
features [15, 29], the problem remains unsolved, because
neither 2D features nor local 3D convolutions are aware of
the global information of the 3D scene. As a result, they
still suffer from the low accuracy. Moreover, most online
3D segmentation methods only provide semantic predic-
tions, without instance-level understanding. How to achieve
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highly accurate 3D semantic instance segmentation while
enabling online inference along with 3D reconstruction is
still an open question.

We propose INS-Conv, an incremental sparse convolu-
tional network, which enables online accurate 3D seman-
tic and instance segmentation. We observe that in online
RGB-D reconstruction, the reconstructed scenes at each
time step form an incrementally growing 3D geometry se-
quence, where the residuals between two continuous 3D
frames are usually sparse. Therefore, a lot of redundant
computation could be saved by performing incremental in-
ference on the residuals of continuous frames. More specif-
ically, for layer design, we define novel residual propaga-
tion rules for sparse convolution operations. By replacing
the layers of a standard sparse convolutional network with
our INS-Conv layers, we can achieve efficient incremen-
tal inference with minimal loss of accuracy. For network
architecture, an uncertainty term is proposed to adaptively
select which residual to update, by ignoring the unneces-
sary updating of the points that already have very confi-
dent predictions, while incorporating points that may have
changed states in the future, further improving the infer-
ence accuracy and efficiency. Based on INS-Conv, an on-
line joint 3D semantic and instance segmentation pipeline
is proposed. At each time step, after the 3D features are
extracted through the INS-Conv backbone network, we use
clustering to generate instance predictions on the updated
points, which are later fused into the previous results to get
the final instance segmentation results using an instance fu-
sion stage. To summarize, our contributions include:

• An incremental sparse convolutional network, INS-
Conv. With the novel residual propagation strategy,
along with adaptive residual selection through uncer-
tainty prediction, it achieves fast and accurate infer-
ence of 3D convolutional networks.

• An online 3D joint semantic and instance segmentation
pipeline implemented based on INS-Conv. It achieves
state-of-the-art segmentation accuracy among online
methods, on par with offline methods.

• A live demo of INS-Conv running locally on a portable
device. The superior performance of INS-Conv in
terms of both accuracy and efficiency makes it partic-
ularly adapted to AR/VR or robotics applications.

• The code is available at: https://github.com/
THU-luvision/INS-Conv

2. Related Work

Offline Scene Segmentation 3D scene semantic and in-
stance segmentation are widely studied topics in computer
vision. For semantic segmentation tasks, most recent deep
learning based methods fall into two types according to

convolution type: point based [11, 24–27] and voxel based
[2, 4, 12]. We focus on voxel based methods in our work.
They take voxelized point clouds as input and then ap-
ply 3D convolution on the voxel grid. Early works adopt
dense 3D convolutions [10, 31]. However, due to the high
computation cost for high dimensional data, they could
not handle large-scale voxel grids. The critical limita-
tion is later solved by the emergence of sparse convolu-
tion [2, 4], which exploits the inherent sparsity of the 3D
point cloud, demonstrating state-of-the-art segmentation ac-
curacy. Hu et al. [12] later propose to jointly train 2D and
3D networks, achieving top performance. For instance seg-
mentation, sparse convolutional networks are also widely
used [8,16,17]. Lahoud et al. [17] propose a learning-then-
clustering approach, performing meanshift clustering based
on the per-point features extracted using a sparse convolu-
tional network. Jiang et al. [16] propose to perform clus-
tering on both the shifted coordinates and the original co-
ordinates, and use an additional 3D network to predict the
scores for the generated proposals. Han et al. [8] introduces
an occupancy signal to guide the clustering stage. We fol-
low the similar clustering-based approach, adding a fusion
stage to fuse predictions of multiple frames.

Online Scene Segmentation Online scene segmentation
has wide applications in AR/VR and robotics. The task is
to predict semantic or instance labels along with 3D recon-
struction system in real-time. Early works tackle this prob-
lem using the 2D-3D approach, which means to predict 2D
semantic probabilities for each RGBD frame using 2D CNN
and then project back to 3D space, followed by a proba-
bilistic fusion step [18]. Narita G et al. [20] first perform
instance segmentation in 2D, and then fuse the results to 3D
to achieve online panoptic segmentation. Zhang et al. [29]
propose to fuse 2D features by performing 3D point convo-
lution on local neighborhoods, achieving accuracy improve-
ments. However, it can only process very few points in or-
der to maintain online speed. Following a similar paradigm,
Huang et al. [15] perform 3D point convolution on super-
voxels to fuse 2D features, which improves the speed, and
achieves leading online semantic segmentation accuracy.
However, these methods highly rely on 2D features and fail
to capture global 3D information, resulting in a gap between
offline and online methods. Instead, we follow the voxel
based approach widely used in offline methods and perform
incremental inference to achieve online performance.

Incremental CNN Several works have studied incremen-
tal inference on 2D convolutional networks, mostly tar-
geting efficient video sequence processing. Cavigelli et
al. [1] propose a change-based convolution layer, which
performs conditional updates based on the input feature
change. O’Connora and Welling [21] achieve inference
speedup by performing convolutions on the quantized tem-
poral residual of input features. Habibian et al. [5] further
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Figure 2. Overview of our incremental 3D semantic and instance segmentation pipeline. Given a sequence of gradually growing input
geometry, an INS-Conv backbone network is used to extract per-point feature on the residual, followed by a clustering and fusion stage to
generate the final semantic and instance segmentation results. Please refer to Sec. 3 for details.

use a learned gate function to decide which input residual
is important. Xu et al. [28] propose to reuse feature maps
of similar frames by reusable image region lookup. How-
ever, these methods only deal with dense 2D convolutions
and are not directly suitable for 3D sparse convolutions.

3. Methods
An overview of our incremental semantic and instance

segmentation pipeline is shown in Fig. 2. At the core is the
INS-Conv backbone network, which is used for incremen-
tal feature extraction on the residuals of a series of gradually
changing input geometry. Afterwards, the clustering stage
and fusion stage work to generate temporally consistent se-
mantic and instance segmentation results.

This section is organized as follows. After introducing
the insight of INS-Conv in Sec. 3.1, we describe the layer
design and the network architecture of INS-Conv in Sec. 3.2
and Sec. 3.3, respectively. Finally, the online 3D semantic
instance segmentation pipeline is described in Sec. 3.4.

3.1. Insight of INS-Conv

Recall that a linear map is a function f that satisfies:

f(x+ y) = f(x) + f(y), f(cx) = cf(x), (1)

and the combination of linear maps is also a linear map:

f(g(x+ y)) = f(g(x)+ g(y)) = f(g(x))+ f(g(y)). (2)

In neural networks, many modules are linear maps, e.g.,
convolution layer and linear layer. Some advanced modules
like batch normalization and residual blocks also satisfy the
above equations by ignoring the potential bias term for sim-
plicity. Thus, based on Eqn. 2, neural networks composed
of these linear modules are linear maps as well (non-linear
layers are described later in Sec. 3.2).

In our case, the neural network inference is performed
on an incrementally reconstructed scene. We define xt as
color features of all voxels that have been built up at time
t, and ∆t

x as residuals (differences) between xt and xt−1.
Our neural network f inputs the color features of voxels,

and outputs the labels of each voxel. For current time t, the
network forward can be divided into two parts:

f(xt) = f(xt−1 +∆t
x) = f(xt−1) + f(∆t

x), (3)

where f(xt−1) has been computed previously. Thus, we
can simply use the cached result and calculate f(∆t

x)
merely. The calculation of f(∆t

x) indicates that the net-
work is propagating residuals of features, because for every
linear map layer l, l(∆x) = l(x+∆x)− l(x) = ∆y , where
x and y denote the input and output feature of this layer.

In a short summary, we show that neural network infer-
ence on a sequence of input can be reformulated as prop-
agating the residuals of input features, making incremen-
tal prediction possible. Based on such insight, we pro-
pose INS-Conv, an incremental sparse convolutional net-
work that is fast and accurate for online 3D segmentation,
as elaborated in the following subsections.

3.2. Layer Design of INS-Conv

Review of Sparse Convolution The key idea of a standard
sparse convolution is to ignore the empty locations, only
storing and calculating convolutions on the non-empty sites
of the input data. To avoid dilation of non-empty sites, sub-
manifold sparse convolution (SSC) [4] merely calculates the
output features for active sites of the input. Formally, sub-
manifold sparse convolution operations are performed on a
ND spatial neighborhood of each site u:

xout
u =

∑
i∈ND

Wix
in
u+i if u ∈ A, (4)

where N is a pre-defined kernel size, D indicates the di-
mension of spatial space (equals to 3 for 3D convolution),
and Wi is the weight matrix at location i for input features
xin
u+i. A denotes the set of non-empty sites of the input ten-

sor. More details can be found in [4].
INS-SSC Layer We define an incremental submanifold
sparse convolution (denoted as INS-SSC) layer that per-
forms submanifold sparse convolution on residuals.

Recall that the sparse convolution is computed for input
sites that have non-empty features. We denote this site set
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Figure 3. Illustration of the INS-SSC layer using a 1-D sparse
convolution example with a kernel size of 3. After the propagation
is performed on the previous frame as in (a), the INS-SSC layer
is performed on the residuals of the current frame as in (c). (b)
shows the standard SSC rule may cause residual dilation, thus not
suitable for residual propagation. (d) shows INS-SSC with neigh-
bor propagation, where residuals of unchanged sites are estimated
from their neighbors. Details are in Sec. 3.2.

as A, and in addition maintain an active residual site set B,
which includes input sites that have non-empty residuals.
Let the input and output features of current layer at frame
t be xt and yt, respectively. Then, the residuals of input at
frame t become ∆t

x = xt−xt−1, and our goal is to compute
∆t

y . The propagation rule for INS-SSC layer is defined as:

∆t
yu

=

{∑
i Wi∆

t
xu+i

if u ∈ Bt ∩At−1,∑
i Wi(∆

t
xu+i

+ xt−1
u+i) if u ∈ Bt \At−1.

(5)

Fig. 3 gives an intuitive illustration of INS-SSC using 1-D
sparse convolution example with a kernel size of 3. Com-
pared with the conventional SSC [4], INS-SSC is different
in that: 1) INS-SSC takes residual as input; 2) INS-SSC op-
erates on the active residual site set B, rather than the set of
all active features A. Since B is much more sparse than A,
INS-SSC would be more efficient; 3) INS-SSC constrains
the output active residual set to be identical to the input,
while SSC would ‘dilate’ the active residual set after each
layer, as shown in Fig. 3(b)(c). 4) INS-SSC follows differ-
ent convolution rules. The rules used in SSC could yield
incorrect results in the case where u is a new active site that
was previously inactive. Specifically, the previous feature
yt−1
u is set to zero under the rule of sparse convolution that

ignores inactive sites, but it should exist when u becomes
active at current frame, which we denote as ŷt−1

u . The com-
pensation can be made by adding ŷt−1

u to the propagated
residual, as stated in Eqn. 5.
Neighbor Propagation The sparse residual propagation
rule of INS-SSC layer assures that the active residual sites
would not dilate, thus bringing computation benefits. Un-
fortunately, discarding the supposed residuals outside of Bt

Output sites

#p
at

hs Individual sites 
Combined

Active residual sites(Updated)Unchanged sites (Not updated) Unchanged sites (Not updated)

Figure 4. Intuition of why the residual propagation rule of INS-
SSC achieves low approximation error.

(a)Current Geometry (c)with neighbor prop.(b)Err. w/o neighbor prop.

Updated points

Figure 5. Visualization of the approximate error of INS-Conv. The
error is calculated by the KL divergence of the output semantic
probabilities between INS-Conv and ‘full’ propagation.

makes INS-SSC no longer identical to ‘full’ propagation
as SSC. To analyze the approximation error, we take 1-D
convolutional network as an example in Fig. 4. Accord-
ing to [19], in general, the distribution of the impact of a
changed input feature to deeper layers resembles a Gaus-
sian distribution centered at the changed input site, which
is measured roughly by the number of unique propagation
paths. Since the active residual sites are spatially nearby in
our case, the sum of impact of all active residual sites re-
sembles a Gaussian distribution as well (plotted in orange
in Fig. 4). Therefore, the effect of truncating the residual
propagation outside of Bt is relatively small. Note we only
care about errors in active residual sites since we only com-
pute for these sites. As visually illustrated in Fig. 5(b), the
error map shows that the overall error is quite small and
mostly distributed at the border of active residual sites due
to the truncation of neighboring residuals.

To further reduce the approximation error at the border,
a neighbor propagation approach is proposed. Our key ob-
servation is that for spatially nearby sites, their features and
residuals should be similar as well. This enlightens us that
given the unchanged input sites m ∈ At \Bt that would not
be updated in INS-SSC while have direct connections to the
output active residual sites, the residuals of these sites can
be approximated by their neighboring active residual sites
using weighted average:

∆t
xm

=
∑

n∈Nm

wmn∆
t
xn
, (6)

where the weights wmn are computed by similarities of fea-
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tures,

wmn =
exp(s(xt−1

m , xt−1
n ))∑

k∈Nm
exp(s(xt−1

m , xt−1
k ))

. (7)

Here, s(xm, xn) = l(xm − xn) denotes the similarity of
feature xm and xn, and l is a linear layer. Nm denotes the
neighbor region of site m and set to be a kernel size around
m in the implementation.

Fig. 3(d) illustrates the INS-SSC layer with neighbor
propagation. Benefiting from the predicted residuals at un-
changed sites, the approximation error can be effectively
reduced as shown in Fig. 5(c).
INS Convolution and Deconvolution Layer The strided
sparse convolution and deconvolution layers are used to
down-sample/up-sample the feature maps. The propagation
rules of INS Convolution layer are the same as INS-SSC ex-
cept we allow dilation of the active residual sites. The INS
Deconvolution layer is simply the inverted operation of INS
Convolution layer.
INS Non-linear Layer Non-linear layers are not linear
maps in general, thus could not directly propagate residu-
als. Formally, for a non-linear function g, ∆t

y is not equal
to g(∆t

x). However, we can calculate the output residuals
∆t

y using the definition of residual:

∆t
yu

= g(∆t
xu

+ xt−1
u )− yt−1

u , (8)

xt−1
u and yt−1

u are cached at the previous time step.
For sites not in active residual site set, their residuals

are defined to be zero. Thus they are ignored in all layers.
Based on the aforementioned layer designs, INS-Conv only
needs to input voxels that have non-zero residuals. These
input sites form the first layer’s active residual site set.

3.3. Network Architecture of INS-Conv

We use a typical UNet-like sparse convolutional network
as the backbone. At training time, it works the same way as
standard sparse convolutional networks. At inference time,
we replace the layers with corresponding INS-Conv layers
to achieve incremental inference. Aiming for the similar
task of 3D segmentation as [8], several representations are
learned for each voxel i, including (1) semantic probabil-
ity si for semantic segmentation, (2) instance embedding
ei for instance segmentation. Details are explained in sup-
plementary material. Additionally, the uncertainty term and
temporal consistency constraint are elaborated below.
Uncertainty Term Recall in INS-Conv, we choose voxels
that have updated color features in the current time as in-
put voxels. Though straightforward, we can further make
this process more intelligent. As we mentioned earlier, the
INS-Conv only computes feature changes for active resid-
ual sites, which are determined by the input voxels due to
the no-dilate rule of INS-SSC. If we know which voxel will

have large changed features in the future, we may addi-
tionally incorporate it in the input, though it may not have
color changes currently due to view scope restriction. On
the other hand, if we know a voxel has already been well
predicted, there is no need to put it in input again.

This selection mechanism can be achieved by predicting
an uncertain probability for each voxel. Here we define a
voxel is uncertain if it is unable to make a correct prediction
on this voxel due to the incomplete scene at current time.
The more uncertain a voxel is, the more likely it will have
a changed state in the future. We propose to train the net-
work to detect uncertain voxels. We formulate it as a binary
classification problem for each voxel. The uncertainty of a
voxel in an incomplete scene is defined to be positive if 1)
its semantic prediction is different from that in a complete
scene, or 2) the distance between its instance embedding
and that in the complete scene is larger than δd. Here δd is
set to 0.8.

To supervise the training, we generate different com-
pleteness for each scene and put each scene along with its
partial scenes in the same batch. We then use the complete
scene prediction and partial scene prediction to generate the
ground truth labels of the uncertainty term.
Temporal Consistency Constraint In [8], the discrimina-
tive loss function is utilized to enforce instance embeddings
of voxels belonging to the same instance to be near in fea-
ture space. In our online setting, we further add a temporal
consistency loss that constrains the embeddings of an in-
stance to be near across time too. This will be useful in our
instance fusion stage to match instances across time, which
we will describe later in Sec. 3.4. Because of our train-
ing strategy that put complete scene along with its partial
scenes in the same batch, the temporal consistency loss can
be formulated as:

Lcon =
1

K

K∑
k=1

1

C

C∑
c=1

1

Nk
c

Nk
c∑

i=1

[||uc − eki || − δv]
2
+. (9)

Here, K means the number of partial scenes of a scene,
C is the number of instances in the complete scene, Nk

c

is the number of voxels of c-th instance in partial scene k,
uc is the mean embedding of instance c in complete scene,
eki is the predicted embedding of i-th voxel of instance c
in partial scene k. δv is set to be 0.1. In short, this term
enforces the embeddings of voxels in partial scenes to be
near to the mean embeddings of their belonging instances
in the complete scene.

3.4. Online Semantic and Instance Segmentation

For each time step, we first calculate the difference of
color feature of each voxel stored in TSDF compared with
the previous frame. The SLAM system will update voxels
in the current view frustum, so the non-zero sites in resid-
ual volume will be a frustum shape. We utilize uncertainty
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Figure 6. Visualization of online semantic and instance results on the validation set of ScanNetv2. We show the online segmentation results
at 3 different time steps for each scene.

to further select voxels as input. Specifically, we filter out
voxels in the frustum whose saved previous uncertainty is
smaller than θ. In addition, we add voxels in the surround-
ing of the frustum whose uncertainty is larger than θ and
treat their residuals as zeros. θ is set to be 0.4 in our case.
Note that voxels in input will be set to be active residual
sites, regardless of whether their residual values are zeros
or not. Due to the no-dilate rule of INS-Conv, we only get
the updated prediction results of voxels in input, which are
then followed by a clustering and fusion stage to generate
the final semantic and instance segmentation results.

Instance Segmentation We adopt the clustering-based in-
stance segmentation scheme. Unlike offline methods [8,17],
we only perform instance clustering on the updated voxels
for high efficiency, using predicted embeddings. The cur-
rent instance set Ic is then fused into the global instance
set Ig . For every instance i ∈ Ic, we compute the simi-
larity S(i, j) between i and every instance j ∈ Ig . Pre-
vious method [20] uses only position overlap to match in-
stances. However, it is hard to determine the overlap ra-
tio to match, and it doesn’t have error correction capabil-
ity. For example, if two instances were falsely consid-
ered as one, they will never get separated. Benefiting from
our temporal consistent instance embedding, we can com-
pute the matching relation by comparing mean embeddings
of instances, thus increasing the robustness. In detail, we
store the mean predicted embedding uj for each instance
j ∈ Ig . The distance dij between i and j is computed as:
dij = exp(−||ui − uj ||2). The position overlap can also
help to measure similarity. The overall S(i, j) is formu-
lated as: S(i, j) = (1 + O(i,j)

2Ni
)dij , where O(i, j) means

the number of voxels of instance i that overlap with global
instance j, and Ni is the number of voxels of instance i.

The maximum similarity Smax(i) of instance i and the cor-
responding global instance ĵ is:

Smax(i) = max
j∈Ig

S(i, j), ĵ = argmax
j∈Ig

S(i, j) (10)

If Smax(i) > α, the instance i will match to global instance
ĵ, else it will be assigned a new instance label. Here α is a
hyper-parameter and set to 0.65 in our experiments.
Semantic Segmentation Instead of directly using the raw
predicted semantic probabilities, we force all points in the
same instance i ∈ Ic to have the same semantic label, i.e,
the majority label of i, to get a more spatially consistent se-
mantic map. Besides, we adopt the fusion method in [20] to
fuse current semantic results to global to make it temporally
consistent.

4. Experiments
Both CPU-Only and GPU versions of INS-Conv are im-

plemented based on [4] and [9], respectively. The INS-Conv
is performed every frame. For every 100 frames, a network
forward is performed on the current full scene using conven-
tional sparse convolution [4] to update the internal features
of the network to avoid drifting error. To show the effect of
INS-Conv, the network outputs of such step are not counted
for the following evaluation. Two different sized models
are tested to show the accuracy and efficiency trade-off, de-
noted as m32 (smaller) and m64 (larger). Please refer to
supplementary material for the details of network architec-
ture.

4.1. 3D Semantic and Instance Segmentation

ScanNetv2 [3] Dataset ScanNetv2 includes 1513 indoor
scenes with 3D semantic and instance labels for training
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Table 1. Semantic and instance segmentation results on Scan-
Netv2. Due to the submission policy, we only report test set results
of the m64 model. The FPS of online methods are fetched from
their papers.

(a) Semantic Segmentation on ScanNetv2

Method Type
mIoU FPS

Val Test GPU CPU
Fs-A [29] Online 67.2 63.0 10 -

SVCNN [15] Online 68.3 63.5 20 -
SCN [4] Offline 69.3 72.5 - -

MkNet [2] Offline 72.2 73.6 - -
Ours-m32 Online 71.5 - 15 10
Ours-m64 Online 72.4 71.7 10 8

(b) Instance Segmentation on ScanNetv2

Method Type
mAP@50 FPS
Val Test GPU CPU

PF [20] Online - 47.8 4.3 -
PointGroup [16] Offline 56.9 63.6 - -

OccuSeg [8] Offline 60.7 67.2 - -
Ours-m32 Online 57.4 - 15 10
Ours-m64 Online 61.4 65.7 10 8

and evaluation, and a hidden test set of 100 scenes used for
benchmark evaluation. For the validation set results, we fol-
low the same test/validation split as ScanNetv2 [3]. In Ta-
ble. 1, we report the mean Intersection-over-Union (mIoU)
for semantic segmentation, and the average precision at 0.5
IoU (mAP@50) for instance segmentation on both valida-
tion set and test set. The runtime is also reported as frame-
per-second (FPS) for online methods. For those methods
whose code is not accessible, we report the results from
their papers, thus the FPS may not be precisely compara-
ble due to different hardware and experiment setups.

For semantic segmentation, both two of our models
achieve the highest mIoU among online methods, higher
than SVCNN [15] by a large margin, while being slightly
slower. Compared with offline methods, we are on par
with the state-of-the-art offline methods, while being sig-
nificantly faster for online segmentation purposes.

For instance segmentation, PanopticFusion (PF) [20] is
the only recent online segmentation method that provides
instance prediction. We achieve much higher mAP@50
(17.9%) while being faster (Note that PF requires two
GPUs, while we only need one). Compared with offline
methods, we achieve similar mAP@50. It is worth not-
ing that our method does not take any post-processing tech-
nique, which however, has been widely used in offline meth-
ods to increase their accuracy numbers. Fig. 6 gives the
qualitative semantic and instance results of our method.
SceneNN [14] Dataset SceneNN provides 76 indoor scenes
with semantic and instance annotations. For semantic seg-
mentation, we train our model on ScanNetv2 and evaluate
on SceneNN to test the ability of generalization, following

Table 2. Results on SceneNN dataset using the m64 model; (a)
Semantic average mAcc(%), compared with other online methods;
(b) Instance mAP@50(%), compared with offline methods.

(a) Semantic on SceneNN
Method(Online) mAcc

Fs-A [29] 71.5
SVCNN [15] 76.5
Ours(Online) 79.5

(b) Instance on SceneNN
Method(Offline) mAP@50
MLS-CRF [23] 12.1

Occuseg [8] 47.1
Ours(Online) 57.6

Table 3. Runtime (ms) of each stage of our pipeline, including
network, instance clustering, instance fusion and semantic stage.
The network runs in parallel with other stages.

Model Network Clust. Fusion Sem. FPS
m32 61 32 33 2 15 Hz
m64 99 30 35 2 10 Hz

the same setting as SVCNN [15]. The evaluation metric is
average mean accuracy (mAcc). As shown in Table. 2(a),
our method is superior to all the previous online methods.

For instance segmentation, We trained from scratch on
SceneNN, 50 scenes for training and 20 for testing, follow-
ing the same setting and split as [8]. The comparisons with
existing offline methods are shown in Table. 2(b). Surpris-
ingly, we achieve much better mAP@50, possibly because
our training strategy prevents overfitting. For per class re-
sults, please refer to supplementary material.
Runtime Analysis Following PF [20], the computation
time is evaluated on scene0645 01, a representative large-
scale scene in ScanNetv2. Experiments are performed on a
computer equipped with an Intel Core i7-6800K(3.4GHz)
CPU, and a Titan Xp GPU. As our 3D segmentation
pipeline contains four stages: 1) network, 2) instance clus-
tering, 3) instance fusion, 4) semantic segmentation, we
report the averaged time of each stage in Table. 3. The
network runs on GPU, and is parallel with other stages.
The FPS of joint semantic and instance segmentation are
15Hz and 10Hz for m32 and m64 models, respectively.
For the CPU version, the FPS are 10Hz and 8Hz. We
also test our baseline method, predicting the current full
scene every frame, using the m64 model. On average, the
network forward takes 649ms, and the instance clustering
takes 1100ms. Our INS-Conv achieves 6.5x faster for se-
mantic segmentation, and 11x faster for joint semantic and
instance segmentation. By integrating with a SLAM sys-
tem [6,7,30], we provide an online demo of INS-Conv on a
portable device. Please refer to supplementary material.

4.2. Ablation Study

We explore the effectiveness of different components in
our method. The ablation experiments are conducted on the
validation set of ScanNetv2. All model sizes are the same
as the m64 model.
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Table 4. Ablation study on INS-Conv. Semantic and instance re-
sults show that it significantly boosts the accuracy. The compari-
son with ‘full’ propagation demonstrates approximation ability.

INS-Conv Neighbor propagation mIoU mAP@50
× × 58.0 30.5
✓ × 72.1 60.9
✓ ✓ 72.2 61.2

Full propagation 72.2 61.3

Table 5. Approximation error to
full propagation(×10−3), cal-
culated by averaged per frame
MSE of last layer features.

MSE
w/o neighbor prop. 9.3

Ours 5.0

Table 6. Ablation study on tem-
poral consistency constraint.
The instance mAP@50 results
are reported.

mAP@50
w/o consist. 59.6

Ours 61.2

Effect of INS-Conv To show the effectiveness of INS-
Conv, we replace INS-Conv with standard sparse convo-
lution [4] and perform on the same input points, i.e., the
points in the current view frustum. The comparison of se-
mantic and instance results are shown in the first and second
row of Table. 4. Without INS-Conv, the accuracy drops sig-
nificantly. This is because INS-Conv is an approximation to
the full scene inference, while the naive way can only “see”
the current frustum. This shows the importance of global
information in 3D semantic and instance segmentation.

The neighbor propagation module is also evaluated. It
can reduce the approximation error of INS-Conv. Fig. 5
give the qualitative result of approximation error reduction,
we also provide quantitative results in Table. 4 and Ta-
ble. 5. By using neighbor propagation, the approximation
error of last layer features is reduced by about 50%, achiev-
ing nearly the same semantic and instance results compared
with ‘full’ propagation.
Effect of Temporal Consistency Constraint Temporal
consistent embedding helps to match current instances to
global instances in the instance fusion stage. To verify the
importance of temporal consistency constraint, we train the
network without the consistency loss term. The compari-
son results are shown in Table. 6. We can see a clear drop
in instance mAP. This is because, without temporal consis-
tent embedding, the current instances often fail to match to
global instances. These instances will be assigned to a new
label, resulting in over-segmentation.
Effect of Uncertainty Term Using uncertainty probabil-
ity to select points as input makes our INS-Conv more in-
telligent. Fig. 7 shows the predicted uncertainty map of
an incomplete scene. We can see that the uncertainty is
high in points that are hard to predict due to incomplete
nearby scene, while low in points that have already been

(a) Current Geometry (b) Uncertainty (c) Current Semantic (d) Complete Semantic

Figure 7. Visualization of the predicted uncertainty map. We show
that high uncertainty mostly happens on points that are falsely pre-
dicted because of incomplete scene.

Table 7. Ablation study on uncertainty-guided input selection
method. We report the semantic and instance accuracy results on
the ScanNetv2 validation set. The average time of network run-
ning on CPU-Only and on GPU, together with the average number
of input points per frame are tested on scene0645 01.

mIoU mAP@50
avg. time

#pts
CPU GPU

w/o uncert. 72.2 61.2 328 122 19990
Ours 72.4 61.4 125 99 6820

predicted well. To give quantitative results, we compare our
uncertainty-guided input selection method with the naive
way, i.e., choosing points in the current view frustum as
input. We test the accuracy, together with the time of our
network running on CPU and on GPU, with the m64 model.
As shown in Table. 7, by using uncertainty, we not only re-
duce the computation time but also increase the accuracy.
The average number of points processed per frame is re-
duced by about 66%. We notice that the time reduction is
most significant while running on CPU, this is because CPU
processes data in sequential. By using uncertainty to select
input, we largely reduce the data to process, thus enabling
real-time CPU-only 3D segmentation.

5. Discussion and Conclusion
In this work, we propose INS-Conv, a 3D sparse con-

volutional network that enables accurate and efficient in-
cremental inference. Based on that, we achieve online
3D semantic instance segmentation. Extensive experi-
ments demonstrate the superior online segmentation accu-
racy. Our method also has a few limitations. First, the
partial scene segmentation problem has not been seriously
studied in our method. Incorporating 2D information might
be useful. Second, we still need to perform a global network
update every 100 frames to avoid drifting error. Although
it performs sparsely, it is interesting to study how to avoid
this step. In the future, we will explore more online tasks
using INS-Conv.
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