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Surface Material Perception Through
Multimodal Learning

Shi Mao , Mengqi Ji, Bin Wang, Qionghai Dai , Senior Member, IEEE, and Lu Fang , Senior Member, IEEE

Abstract—Accurately perceiving object surface material is criti-
cal for scene understanding and robotic manipulation. However, it
is ill-posed because the imaging process entangles material, light-
ing, and geometry in a complex way. Appearance-based methods
cannot disentangle lighting and geometry variance and have diffi-
culties in textureless regions. We propose a novel multimodal fusion
method for surface material perception using the depth camera
shooting structured laser dots. The captured active infrared image
was decomposed into diffusive and dot modalities and their con-
nection with different material optical properties (i.e. reflection and
scattering) were revealed separately. The geometry modality, which
helps to disentangle material properties from geometry variations,
is derived from the rendering equation and calculated based on the
depth image obtained from the structured light camera. Further,
together with the texture feature learned from the gray modality, a
multimodal learning method is proposed for material perception.
Experiments on synthesized and captured datasets validate the
orthogonality of learned features. The final fusion method achieves
92.5% material accuracy, superior to state-of-the-art appearance-
based methods (78.4%).

Index Terms—Material recognition, structured light camera,
subsurface scattering, multimodal learning.

I. INTRODUCTION

INFERRING objects’ inherent material properties from cap-
tured images can provide a substantial understanding of the
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scene and benefit scientific areas including computer vision,
computer graphics, and robotics. For example, although similar
in appearance, a porcelain mug is much more fragile than a
plastic one, requiring the robots to manipulate with carefulness.
However, such image-based material recognition is ill-posed
because the image perception process entangles material, ge-
ometry, and lighting in a complex way. With the ability of depth
acquisition and active illumination, the structured light cam-
era provides useful disentangling factors required for material
recognition.

The key insight of using the structured light camera is that
it provides an efficient probing function to detect the subsur-
face scattering effect, which describes how light penetrating
the material surface is being scattered and exits the surface
at a different point (see Fig. 1). Frequently observed in daily
translucent surfaces like skins, plastics, marble, and wax, sub-
surface scattering acts as a discriminant feature for material
classification. However, when illuminated by a diffusive light
source, its characteristic point spreading function (PSF) is hard
to be observed due to spatial integration. Therefore, a “probing
function” is needed for the system diagnosis. Related works
like [1], [2] modulate incident light temporally to implicitly
reconstruct temporal PSF, and [3] modulates incident light spa-
tially for binary material classification, showing the feasibility.
Similar to [3], a speckle dot pattern projected by the structured
light camera is used in this paper as a spatial “probing function”.
However, unlike their contrast-based method which is limited
to fixed distance and flat surface, this paper aims to handle
geometry and distance variance. In addition, the diffusive light-
ing, which is a by-product produced by the diffractive optical
element (DOE) of the structured light projector, allows us to
detect reflection features in the infrared (IR) spectrum.

Furthermore, a typical off-the-shelf structured light camera is
not only equipped with an active IR sensor, but also an RGB
sensor for visual acquisition. Such ambient light illuminated
RGB image is more sensitive to material’s texture, which is
seriously damaged by the dot-pattern in IR image. Since the
scattering and reflection feature learned from the IR image is
orthogonal to the texture feature learned from the RGB image,
the material discrimination power is increased by fusing these
modalities. To validate the proposed method, both synthesized
and captured datasets are collected for evaluation.

The main contribution of this paper is twofold. First, we show
how the surface properties, including reflection and scattering,
are related to the different components of the actively illumi-
nated IR image. Second, a multimodal fusion method using
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Fig. 1. Surface properties under different modalities. Although the difference between the porcelain mug and plastic one (with a silica gel protector) is limited in
the RGB image, it’s obvious in dot-pattern IR image with different point spreading effects. The underlying surface optical properties include reflecting (red arrow)
and scattering (deep and light orange arrows).

all the images acquired from an off-the-shelf structured light
camera is proposed based on the orthogonality of corresponding
learned features. Both theoretical analysis and experimental
validation are provided. Comparative experiments show that
the multimodal fusion method is superior to state-of-the-art
appearance-based methods (92.5% vs. 78.4%).

II. RELATED WORK

Material recognition attracts a wide interest of researchers
from areas of computer vision, computer graphics, and robotics.
Related works can be grouped in the following categories:

Natural Appearance Methods. Typically, researchers using
single image visual appearance classify materials by their char-
acteristic features of texture, color, and context. The first group
of works sought to use only local features (mainly textures and
colors) to classify materials. Schwartz et al. [4] learned material
attributes from local image patches for material representation.
Zhang et al. [5] designed a special texture encoding network
that utilized orderless representation for material and texture
recognition. Xue et al. [6] extended the idea by encoding extra
local spatial information in their DEP network. Such methods
worked for materials with distinct textures, such as wood. But
they struggled in recognizing texture-less yet geometrically
deformable materials like paper and plastic.

Another group of works took non-local context information
into account. Sharan et al. [7] introduced a pioneer material
dataset FMD that contains images from Flickr. Bell et al. [8] in-
troduced a larger dataset named MINC with materials in context.
Methods including kernel-based nearest neighbor distance met-
ric learning [9] and multiscale CNN [8] models are implemented.
These approaches tended to rely on object-level information and
took a shortcut by using object-level shape and context. How-
ever, such material-irrelevant information damaged the model’s
generalization performance. As pointed out by Sharan et al. [10],
their material accuracy dropped when object-level features were

removed. As our approach focuses on local material properties,
we don’t rely on object-level information, while addressing the
texture-less problem by utilizing extra modalities provided by
the structured light camera.

Reflection and Scattering Methods. To recognize material
properties from the perspective of visual physical properties,
methods based on reflection models were proposed. Bidirec-
tional reflectance distribution function (BRDF), which describes
the fraction of light coming out of the surface along a cer-
tain direction given its incident direction and surface normal,
is a suitable representation for material recognition since it’s
invariant under different illumination and geometric structure.
However, although simplified by Nielsen et al. [11], acquiring
full measurement of BRDF is still complicated under control
conditions [12]. Wang et al. [13] classified materials from
BRDF slices collected by a hemispherical dome encircling
the objects. Several works sought to optimize the feature col-
lection effort for material classification [14], [15]. However,
BRDF cannot model mesoscopic features like self-occlusions
and inter-reflection [12]. To accommodate it, the Bidirectional
texture function (BTF), an image-based representation that de-
scribes fine-scale appearance was suggested by Dana et al. [16].
A BTF dataset for material classification was introduced by
Weinmann et al. [17], including both synthesized and measured
data. However, the feature acquisition and storage were still
complex although being optimized [18], making it unpractical
in applications like robotics.

Another group of works gave up the complicated equipments
and resorted to reflection variance detection under different
viewing angles and wavelengths in the wild. Based on the
difference in viewing angle, Wang et al. [19] proposed a 4D
light-field dataset for material recognition, claiming that multi-
ple sub-aperture views and view-dependent reflectance benefits
material recognition. Xue et al. [20] captured images under
a small angular variation to extract angular-gradient features
to improve recognition. On the other hand, from the view of
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Fig. 2. (a) The physical imaging process. Infrared (IR) light is actively projected by the IR projector and received by the IR sensor after being reflected and
scattered (red). While visible ambient light is received by the RGB sensor (yellow). (b) Different materials’ properties are related to different images. On the top
are raw images directly accessible from the structured light camera. Notice the reflection property is revealed in the IRdif image, which is recovered from the IR
image by using the method described in Sec. IV-A2.

multi-spectral, Salamati et al. [21] classified materials by hand-
craft feature obtained in NIR and RGB spectrum. Saragadam et
al. [22] learned a hyper-spectral classifier by programmable
spectral filters before it was recorded on CMOS, improving
both acquisition speed and SNR ratio. However, without active
illumination, their performance could be hindered by different
ambient light.

Instead of describing materials by reflection properties, Su et
al. [1] proposed to reconstruct the temporal point spread function
(TPSF) from the raw data captured from the time of flight (TOF)
camera to characterize the temporal scattering interaction of
light and material. Similarly, Tanaka et al. [2] acknowledged
the significance of TPSF and proposed to use the resultant
depth distortion as a substitute for raw measurement, making the
method more practical. However, owing to the multi-path effect
of the TOF camera, these methods lack robustness in geometric
variation. Steimle et al. [3] used the spatial point spreading
function to distinguish hand and hard surfaces. However, they
did not account for geometry and distance variation and only
performed binary classification based on local image contrast. In
this work, we not only learn material optical features (reflection
and scattering) using a portable structured light camera but also
disentangle geometry variation using depth images obtained
from the camera.

Multimodal Methods. To take benefits from different modali-
ties, multimodal fusion methods are proposed. Zheng et al. [23]
proposed a deep learning method to use both contact (haptic) and
non-contact (visual) information to classify materials. DeGol et
al. [24] aligned 2D images with 3D geometry to proposed a
geometry-informed material recognition method. Erickson et
al. [25] mounted a high-resolution camera and near-infrared
spectrometer on the PR2 robot’s hand to classify materials based
on texture and spectroscopy. By fusing different modalities,
reported methods were more powerful by examining material
properties from different aspects. Our approach validates such
addable multi-dimensional discrimination power by fusing dif-
ferent modalities (dot, diffusion, and gray) accordingly.

III. STRUCTURED LIGHT CAMERA AND MATERIAL PROPERTIES

In this section, we relate observed IR images captured by
the structured light camera to different material optical prop-
erties. Specifically, subsurface scattering and direct reflection
properties are revealed under the mixed illumination pattern
projected by the structured light camera. As shown in Fig. 2,
by observing the subsurface scattering effect, the plastic bottle
cap is distinguishable from the upper-right part of the notebook
in the raw IR image, although both are red in the RGB image.
By observing the reflection effect, the chair’s cushion is dis-
tinguishable from the chair’s back in the ‘smoothed’ IR image
(termed as IRdif in Sec. IV-A2), although both are black in
the RGB image. However, when textures are considered as a
material feature, the RGB image shows better discrimination
power since it is illuminated by low-frequency ambient light.
The physical imaging process of IR images (involving material
optical properties, geometry, and lighting) is analyzed in this
section.

A. Material Optical Properties

Following Jensen et al. [26], the general bidirectional surface
scattering distribution function (BSSRDF) models the relation-
ship between outgoing radiance and incoming radiant flux from
different angles and locations, accounting for direct reflection
and subsurface scattering. Such outgoing radiance Lo at point
x from direction wo can be split into two terms: the direct
reflection term Lr and subsurface scattering term Ls [27].

Lo(x,wo) = Lr(x,wo) + Ls(x,wo) (1)

For subsurface scattering, Jensen et al. [26] decompose it into
single and multiple (diffuse) terms. Since single-scattering for
optically dense materials decreases much faster than multiple
scattering as the distance between incident point xi and outgoing
point xo increases, it attributes little to the overall outgoing
radiance. The widely adopted dipole method models the out-
going radiance of multiple scattering as a spatial convolution of
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Fig. 3. Recovering IRdif by filtering (median filtered) IR image guided by
the (aligned) gray image. Notice both the median filtered IR image and IRdif

image was enhanced 4x in intensity for better visualization.

a PSF and incoming irradiance on the object surface. Where the
material-related PSFRd(||x− xi||;σa, σs, p) is a shift-invariant
function of material’s absorption coefficient σa, scattering coef-
ficient σs and phase function p. The final subsurface scattering
term can be integrated as:

Ls(x,wo) = L1(x,wo) +

∫
A

Rd(||x− xi||)E(xi)dA(xi)

≈ Rd(x) ∗ E(x) (2)

where E(x) is the incident irradiance at surface point x, and
L1 is the single-scattering term. Following [28], we ignored the
Fresnel term in above equation because such Fresnel effect can-
not be observed under our setting where incident and outgoing
light directions are approximately the same, i.e. wi ≈ wo, (see
detailed analysis of this approximation in Sec. III-B).

The direct reflection is well studied by the bidirectional
reflectance distribution function (BRDF), which describes the
direct reflection without penetration, i.e. xi = x. The famous
physical-based Cook-Torrance model parameterizes BRDF with
diffuse albedo kd, specular albedo ks and surface roughness r:

Lr(x,wo) = kdE(x) + ks

∫
2π

Sp(n,wi, wo; r)Li(xi, wi)dwi

(3)
whereSp, parameterized by material roughness r, is the specular
term describing the specular reflectance under surface normal
n, and Li is the incident radiance. Notice that since the pixels
corresponding to strong specular reflection angles are corrupted
by over-exposure, the structured light camera cannot calculate
their valid depth. This effect seriously damages the local ge-
ometry information. Therefore, in this paper, we only focus on
materials with relatively high roughness to avoid such depth
incompleteness.

Finally, suppose the projection of a surface point x on the
image is xp. When enough resolution is provided, the intensity
for this pixel, denoted as I(xp), is approximately proportional
to the outgoing radiance.

I (xp) ∝ Lo (x,wo) (4)

B. Structured Light Camera

Structured light cameras are wildly used in object 3D sensing.
By projecting a known pattern onto a scene and analyzing the
reflected distorted patterns, a typical off-the-shelf structured
light camera can calculate the depth of the scene being imaged.
As shown in Fig. 2, such a camera is equipped with a projec-
tor emitting patterned infrared light and a sensor with a filter

in the corresponding spectrum (usually the infrared spectrum,
red-tinted in Fig. 2). Usually, an extra calibrated RGB sensor
(yellow-tinted in Fig. 2) is equipped for general visual perception
under ambient light.

While the projecting pattern varies among different cameras,
the Primesense designed collimated dot pattern is the most
commercially successful one. This pattern is widely adopted in
Kinect-V1 (Microsoft), Xtion (Asus), and iPhone (Apple). This
spatial multiplexing speckle dot pattern was created through
diffracting the laser emitted light by a diffractive optical element
(DOE). It provides an efficient probing function for spatial PSF.
As a byproduct of the pseudorandom dot pattern, the diffuse
lighting and 0-th order highlight are also created by DOE [29].

For subsurface scattering, the dot-pattern illumination pro-
vides multiple probing functions for the diffusive PSF kernel
Rd. Specifically, the radiant of each single collimated laser
beam can be modeled as a ‘δ-function’ with fixed intensity
Ldot. Therefore, the irradiance on material surface point x being
illuminated is only related to the incident direction:

Edot(x) = LdotM(x)〈n,wi〉 (5)

where M(x) is a sparse mask indicating whether the surface
point x is illuminated by the dot-pattern illumination, wi is the
direction from the surface point to the projector center, n is the
normal of the surface at point x, and 〈·, ·〉 denotes inner product
operator. Since the designed energy of the outgoing light exceeds
the dynamic range of the image sensor, it is unable to distinguish
different reflection intensities.

On the contrary, diffusive isotropic illumination is suitable
for direct reflection feature learning. Modeling such isotropic
illumination as a point light source with fixed radiant intensity
Idif , the radiance at surface point x attenuates following an
inverse square law of its distance to the light source, denoted as
r:

Edif (x) =
Idif
r2

〈n,wi〉 (6)

A simplified model considering only the diffuse subsurface
scattering and diffuse direct reflection around a local region on
the surface can be formulated as:

Lo(x,wo) ≈ Rd(x) ∗ E(x) + kdE(x)

= (Rd(x) + kdδ(x)) ∗ (Edot(x) + Edif (x))

≈ (Rd(x) + kdδ(x)) ∗ Edot(x)

+ (Rd ∗ 1(x) + kd)
Idif
r2

〈n,wi〉

= R′
d(x) ∗M(x)Ldot〈n,wi〉+ k′d

Idif
r2

〈n,wi〉
(7)

where 1(x) is a function with constant value one to approximate
local diffusive illumination, k′d = Rd ∗ 1(x) + kd denotes aug-
mented diffuse albedo, and R′

d(x) = Rd(x) + kdδ(x) denotes
augmented PSF. The first part of the formula involves a convo-
lution of augmented local material PSF R′

d(x) with dot-pattern
illumination mask M(x), while the second part is simply the
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diffuse radiance amplified by a factor of augmented diffuse
albedo k′d.

To take a deeper look at these equations, we can decompose
images by different illumination conditions. Consider an in-
frared image IRdif taken under diffuse illumination only, i.e.
E(x) = Edif (x), it would be difficult to distinguish material’s
sub-surface scattering properties because in the second term
such spatial PSF information is lost due to a convolution with
similar local illumination, although being easy to distinguish
augmented diffuse albedo k′d (which is dominated by diffuse
albedo kd by value). On the contrary, for an infrared image
IRdot taken under dot-pattern illumination only, i.e. E(x) =
Edot(x), the diffuse albedo contributes to the pixel’s intensity
only on those direct illuminated points, whose value is usually
over-exposed under limited dynamic range. It would also be
difficult to distinguish such albedo properties under dot-pattern
illumination only, although being easy to capture spatial PSF
by probing it with an illumination mask. Therefore, it would be
beneficial to use both of them for better material recognition
ability.

Notice that since the spatial convolution happens on the
material surface instead of the image plane, the PSF kernel
cannot be correctly recovered simply by deconvolution. Both
the shape and distance of the surface deform the point spreading
effect observed on the image, not to mention the anisotropic
single-scattering term. Specifically, as the distance increase,
the projected PSF kernel will shink inverse proportionally (i.e.
approximately at rate 1/d, where d is the depth from the surface
point to the sensor’s image plane), and the PSF will be tilted by
different shapes.

IV. METHOD

Our method uses reflection, scattering, and texture features
for material classification. A geometry term is derived from the
lighting model and calculated from the depth image to disentan-
gle the geometry-induced variation on the observed image.

A. Image Preprocessing

1) Geometry Term: As analyzed in Sec. III-B, under fixed
lighting, the observed IR image deeply entangles both material
and geometry of the objects. To classify materials regardless of
their geometry, several factors are needed for disentanglement.
Specifically, it includes the inverse of depth 1/d, the inverse
square between each point and the center of the projector 1/r2,
and the inner product between surface normal and incident light
direction 〈n,wi〉. The last two factors need to calculate the
incident light direction. Since the commercial structured light
camera has a relatively small baseline (several centimeters),
concerning the scale of the scene (several meters), it’s reasonable
to approximate the incident light direction wi with the outgoing
light direction wo. The latter is easy to calculate given the
camera’s FOV and pixel location. We term the collection of
such information as the geometry modality and use it as input
for disentangling the geometry factors for material classification.

Specifically, we employ a conventional definition of camera
space with the origin point locating in the camera’s optical

center, Z axis pointing towards the image center, and X,Y axes
aligning with the camera’s edges. The projection of material
surface point x(x, y, z) on IR image is xp(u, v), where (x, y, z)
and (u, v) are their coordinates in camera space and image
plane respectively. By stereo vision calculation, each pixel in
IR image is assigned with a depth value d = z − f representing
the distance from its corresponding surface point x to the image
plane, where f is the camera’s focal length. When given the
ratio between focal length and the pixel’s width and height of IR
sensor, termed as fx, fy respectively, the un-normalized surface
normal direction of surface point x can be calculated from its
projected location xp:

n′(u, v) =
[
dz

dx
,
dz

dy
,−1

]T
=

[
fx
z

dz

du
,
fy
z

dz

du
,−1

]T
(8)

Since d and z differ only by a constant value, their differential
is the same. Therefore dz

dv and dz
du can be calculated by applying

differential operator on whole depth image. In our implementa-
tion, we use vertical and horizontal Sobel operators to calculate
such differentials. The un-normalized out-going direction from
surface point x to camera sensor can be calculated from its
projected location xp:

w′
o(u, v) =

[x
z
,
y

z
, 1
]T

=

[
u

fx
,
v

fy
, 1

]T
(9)

Since we approximates wi with wo, we calculate the desired
〈n,wi〉 for every pixel xp in image plane by first normalize the
above un-normalized version by their L2 norm and then take
inner product.

〈n,wi〉 ≈ 〈n,wo〉 =
〈

n′

||n′||2 ,
w′

o

||w′
o||2

〉
(10)

Similarly, we approximate IR camera’s origin point as the
light source point to calculate the distance from surface point
x to diffusive light source point as r(u, v) ≈ ||zw′

o(u, v)||2. By
taking element-wise inverse square for all pixels in the image,
we obtain the radiance attenuation factor 1/r2. Finally the
PSF kernel shrinking factor 1/d is calculated by element-wise
inversion of the depth image.

Notice every factor is calculated as a single channel image
with the same size as IR image, we channel-wise stack them
together to generate a three-channel geometry modality image.
Specifically, if the IR image has shape (H,W ) the stacked ge-
ometry modality image is a (3, H,W ) tensor, with 〈n,wi〉, 1/r2
and 1/d image being its channels sequentially.

2) IR Image Processing: As analyzed in Sec. III-B, the
observed infrared image IR is a superposition of diffuse-
illuminated image IRdif (termed as diffusion modality) and
dot-pattern-illuminated image IRdot (termed as dot modality).
Since the dot-pattern dominants the overall illumination, its
corresponding image also dominate the observed image, i.e.

IR = IRdot + IRdif ≈ IRdot (11)

To better distinguish material’s albedo properties, the weak
diffusion modality IRdif needs to be explicitly recovered. A
simple way to address the problem is to consider the observed
infrared image as a distorted version of diffusion modality, being
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Fig. 4. An overview of method for material classfication.

distorted by strong “salt-and-pepper” noise. However, the noise
cannot be fully removed simply by median filtering because it is
not randomly distributed, but spatially related due to PSF. Here
we use guided image filtering [30] to transfer edge clues from
gray-scaled image (averaged from aligned RGB image described
in Sec. IV-A3) to the median filtered IR image. This allows us
to remove the dot-pattern while preserving the sharp edges. We
directly use the observed IR image as dot modality since it is the
dominant component, and validate this choice by experiments.

3) RGB Image Processing: Being corrupted by dot-pattern,
the recovered diffusion modality cannot capture the fine texture
of materials, which is related to different self-occlusion of the
surface micro-geometry. For example, the texture of fur and
fabric are significant material features, but not fully captured
by the optical properties described above. Here we use gray-
scaled RGB image (termed as gray modality) for texture feature
learning. We use gray modality instead of the raw RGB image
to avoid color variance induced by ambient lighting and dyeing,
which is invariant to materials.

Also, notice that the RGB image is not aligned with the IR
image, because they are captured by different cameras. To avoid
such misalignment, we need to align images from RGB image
space to IR image space. We perform this alignment instead of
the other way around because depth is calculated in IR image
space. Specifically, for every pixel in IR image, we first calculate
its corresponding coordinate in RGB image using their depth
value and RGB-IR camera calibration parameters, and then
assign its value by interpolation of neighboring RGB values. The
final gray modality is averaged over the aligned RGB images.

B. Material Classification Model

The overall material classification process is depicted in
Fig. 4. We first recover diffusion modality from IR image
and directly use IR image as dot modality as described in
Sec. IV-A2. As analyzed in Sec. III-B, both direct reflection and
subsurface scattering entangles deeply with geometry to produce
corresponding diffusion and dot modalities. We disentangle the
geometry variance by taking it as an input to corresponding

feature extractors. Specifically, we channel-wise stack diffu-
sion and geometry modalities (denoted as diffusion-geometry
modalities in Fig. 4), from which the material reflection features
are extracted using ResNet-based convolutional neural networks
(constitutes of four residual blocks followed by 2× 2 max-
pooling layer each). Similarly, the material scattering features
are extracted from the channel-wise stacked image of dot and
geometry modalities (denoted as dot-geometry modalities in
Fig. 4). For texture feature learning, aligned gray modality is
directly fed to the same feature learning networks described
above.

The resulting reflection, scattering, and texture features are
then stacked altogether to perform the final material classifica-
tion through a fully connected network, which has two hidden
layers with 512 and 128 neurons each. The final output layer
has the dimension of materials types. Since materials with
limited specularity are considered, we apply a local patch-based
classification method for material recognition. Patches with size
P × P on the same location of aligned modalities are cropped
and fed into the networks.

V. EXPERIMENT

We collect both synthesized and captured datasets to validate
the proposed material classification method.

A. Data Collection

1) Synthesized Dataset: Firstly, to validate that the reflec-
tion and scattering features are learned under known active
illumination, a synthesized dataset is rendered using Blender, a
physical-based rendering software. The illumination is modeled
by assembling an isotropic point light and a dot-pattern pro-
jector that projects the inverse engineered Primsense designed
pattern. Benefiting from the controllable lighting, we rendered
two images under the isotropic and dot-pattern illumination
respectively. As shown in Fig. 5 a, a camera with the same FOV
and resolution as Xtion IR camera is coupled rigidly with the
projector at a baseline of 6 cm. To align with the actual dynamic
range of the Xtion sensor, we clipped the received intensity
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Fig. 5. Settings for synthesized dataset and different generated material properties. (a) Modeled IR camera, IR projector, and random bumpy planes in Blender.
Both camera parameters and projected pattern are aligned with the Xtion sensor. (b) Materials with different properties are illuminated by mixed lighting. Different
rows differ in subsurface scattering properties and different columns differ in reflection albedo properties. (c) IRdot and IRdif images rendered under their
corresponding illumination, surfaces are either flat or random bumpy. Diffusion images are enhanced for better visualization.

Fig. 6. Settings for captured dataset and selected materials. (a) Images are taken from 4 different depth ranges and 3 different viewing angles in the training set.
Additionally, images taken from two random angles in all depth range constitute the testing set. (b) The Xtion sensor model and capturing setting. (c) Captured 40
different objects, with 30 distinct materials.

being over-exposed. With a physical-based rendering engine,
Blender allows modification of object material properties like
diffuse albedo, roughness, and optical depth for subsurface.
In experiments, material varies in 5 different albedo values
uniformly sampled in range 0.2-1 and 5 different optical depth
values (subsurface scattering parameter) exponentially sampled
in range 0.001-0.02 (Fig. 5 b). To disentangle geometry differ-
ences, the objects include both flat and random bumpy planes
(Fig. 5 c). For each material in the training set, images are
rendered at 4 different distances within the range of 1-4 m, which
is a typical working range for the indoor structured light camera
like Xtion. Also, 9 different angles are sampled uniformly from
the range of ±30◦. In the testing set, two distances and angles
are selected randomly within the described range.

2) Captured Dataset: To test the performance on real-world
materials, we captured images by Xtion sensor. The IR camera
of Xtion is equipped with a band-pass filter that is only sensitive
to emitted 830 nm laser light while filtering out the visible
spectrum. The horizontal and vertical fields of view are 58◦ and
45◦ respectively. The raw image resolution for RGB and IR
cameras is 1280× 1024, and the depth resolution is 640× 480.

Since the PSF spans limited space, the images under the highest
resolution are captured in our experiment.

As shown in Fig. 6, We collected images from 40 different
objects, with 30 distinct materials. several materials like cloth,
carpet, and sponge are collected with different samples with
varying colors and textures. The sampled materials cover a
wide range of material variance including texture, transparency,
reflectance, and subsurface scattering properties. To disentangle
geometry difference, all materials are collected under 4 differ-
ent depth ranges within 1-3 m, each with 3 different viewing
directions (approximately left, middle and right) under flat and
deformed shape (if deformable), resulting in 24 images for each
material in the training set. The testing set is collected following
the same protocol, except each material is sampled from 2
random angles.

B. Classification Experiments

1) Experiment on Synthesized Dataset: To validate the con-
nections between different modalities and material properties
in a controlled manner, we test the classification performance
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Fig. 7. PCA Visualizations of features learned from different material properties. Features learned from dif-geo modalities, denoted as the ‘dif-geo features,’
exhibit a clear clustering structure for material’s albedo (but not for subsurface) on their major PCA directions. While the ‘dot-geo features’ behave just the opposite.

Fig. 8. Different fusion methods. Image-fusion method first element-wise adds diffusion and dot modalities to generate a synthesized ‘ir’ image, and then
channel-wise concatenates ir modality (1 channel) with geometry modality (3 channels). After that, a CNN is attached for classification. Channel-Fusion uses
‘early fusion’ paradigm, which channel-wise concatenates all modalities before forwarding to a CNN classifier. Feature-Fusion method uses ‘late fusion’ paradigm,
which channel-wise concatenates the features extracted from dif-geo modalities and dot-geo modalities before forwarding to a CNN classifier.

TABLE I
PERFORMANCE ON SYNTHESIS DATASET W/O GEOMETRY

on the synthesized dataset. We abbreviate diffusion and ge-
ometry modalities as ‘dif’ and ‘geo’ modalities respectively
when modalities are channel-wise stacked together as input (see
Sec.IV-B). As shown in Table I, Although the overall accuracy
for the model using dif-geo is 22.8%, it achieves 97.7% on albedo
accuracy, indicating that such modalities have good discrimina-
tion power on material’s albedo property, while confused by
its subsurface property. On the contrary, model taking dif-geo
as inputs behaves just the opposite, showing a discrimination
power in different subsurface properties.

This finding is further validated by visualizing the learned
features using principal component analysis (PCA). Here the
features refer to the flattened output vectors of the feature
learning networks described in Sec.IV-B, before being fed
to the downstream classifier. As shown in Fig. 7, in dif-geo
feature space, similar albedo property are clustered together.
Within each group, the subsurface property distributes almost
uniformly. An exactly opposite behavior appears on dot-geo
feature space. This validates the connection between learned
features and material properties.

TABLE II
PERFORMANCE ON SYNTHESIS DATASET WITH DIFFERENT FUSION METHODS

To validate the necessity of introducing the geometry term in
dot and diffusion modalities, an ablation study is performed. The
overall accuracy for models using only dot and dif modalities
are 34.0% and 4.3% respectively, both suffer from a significant
performance drop, compared to the geometry-stacking version.
This performance drop validates the necessary to accounts
for geometry variance. In the following experiments, we use
geometry-stacked versions for diffusion and dot modalities by
default.

To validate the necessity of explicitly recovering diffusion
modality, we test different fusion methods. As shown in Fig. 8,
fusion methods includes image-fusion (IF) that image-wise add
diffusion and dot modalies before stacking with geo modality,
channel-fusion (CF) that channel-wise concatenate diffusion,
dot and geo modalities, and feature-fusion (FF) that channel-
wise concatenate dif-geo and dot-geo features. Notice in image-
fusion, we do not explicitly recover diffusion modality by using
a synthesized ‘raw IR’ image. While for the last two fusion
methods, an explicitly recovered diffusion modality is required.
As shown in Table II, since image-fusion is dominated by
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TABLE III
PERFORMANCE ON CAPTURED DATASET W/O GEOMETRY MODALITY. ACCURACIES ARE CALCULATED FOR 40 SAMPLES AND 30 MATERIALS SEPARATELY, THE

INNER-MATERIAL SIMILARITY GAIN MEASURES THE DIFFERENCE BETWEEN THESE TWO ACCURACIES

dot-pattern, it has a similar performance of dot-geo modalities.
On the contrary, both channel-fusion and feature-fusion benefit
from the explicit recovered diffusion modality, leading to a better
performance on albedo accuracy.

2) Experiment on Captured Dataset: Once the physical
connection between different modalities and corresponding
properties is validated on the synthesized dataset. We examine
the proposed method on the captured dataset for real-world
application. Since we sampled 40 objects with 30 different
materials in the captured dataset, we train our model only
on the objects sample’s label, and test the accuracy on their
corresponding object samples and material labels. This training
method tends to ‘over-classifying’ the materials, but provides a
method to check whether the learned models classify material
based on material-invariant features, e.g. color and geometry
bias. We denoted the difference between material accuracy and
sample accuracy as inner-material similarity gain. Given similar
sample accuracy, the larger the gain is, the better the samples
from the same materials are clustered together. Indicating that
the learned model tends to perform classification based on the
joint feature of the same material instead of the inner-material
difference.

As shown in Table III, when being trained using single
modalities without stacking with geometry, model using gray
modality have the highest sample accuracy, we attribute it to
the fact that texture difference is significant in the captured
dataset. However, models using dot modality have the highest
inner-material similarity. Indicating that the model using dot
modality is more robust in inner-material variance, capturing
good material-related properties. When stacking with geometry,
models using dot-geo and dif-geo modalities exhibits significant
inner-material gain, compared to gray-geo modalities. These
results aligned with the synthesized experiments and theoretical
analysis, where the dot and diffusion modalities derived from
the IR image is illuminated by known pattern, and the material’s
optical properties can therefore be faithfully inferred by disen-
tangling the geometry factors involved in the imaging process.
On the other hand, the gray image is illuminated by uncontrolled
ambient light, making it difficult to disentangle the material’s
optical properties even given geometry factors. We attribute the
insignificant performance gain by stacking geometry term on
gray modality to the fact that it helps the model to explain the
depth-related texture variation.

To further validate that IR modalities can handle difficult
textureless cases while gray modality cannot, we select 10 tex-
tureless white materials from the captured materials, including
materials like white plastic, paper, sponge, wall, cloth, and
foam. The model using gray modality achieves 63.5% material

TABLE IV
COMPARING WITH STAT-OF-THE-ART METHODS

accuracy, compared with 92.4% for the model using dot-dif-geo.
It seems the model using gray modal struggles to find useful tex-
ture differences for these materials, while the optical subsurface
and reflection differences among sampled materials are more
significant.

Since the features learned from the three modalities lie in
different dimensions, we fuse them in a channel-fusion fashion
to evaluate the classification performance. As shown in Table
III, on average, the pair-wise fusion exhibits performance gain
compared with single modal. The method fusing all modalities
achieves the highest 92.5% on material accuracy.

3) Comparing With State-of-the-Art Methods: We compare
the proposed method with state-of-the-art material classification
methods like DeepTEN [5] and DEP [6], [20]. Since we are the
first to use the structured light camera and none of these methods
incorporate dot and diffusion modalities described above, we
compare the performance using gray images only. Both of these
state-of-the-art models take pretrained ResNet18/50 as the back-
bone, we validate their performance with and without using the
pretrained weights to have a fair comparison with our method.
The comparisons are summarized in Table IV. With a dedicated
design on texture feature recognition and pretrained backbone,
DEP and DeepTEN outperform our method with better texture
recognition power. However, the performance using only texture
information (78.4%) is not comparable to our fusion method
which incorporates both textures, reflection, and scattering infor-
mation (92.5%), indicating the significance of extra modalities.
Further ablation study indicates the superior performance of
DEP and DeepTEN relies largely on pretraining for better texture
feature extraction rather than dedicated network design. It is
worth pointing out that the purpose of this work is not to fully
exploit the texture feature but to utilize extra optical material
features, whose performance is shown by the fusion-all model.
Also, the performance gain by using pretrained weights suggests
that a larger real-world dataset that incorporates both RGB and
IR images is beneficial for multi-modal feature learning.

4) Segmentation Experiment: Beyond the patch-based CNN
classification, one can easily apply a sliding window to the full
image to achieve material segmentation. In this experiment, we
instead train our classifier in a fully convolutional way and run
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Fig. 9. Segmentation result of the proposed method. The raw segmentation (middle) lacks local consistency, which is mitigated by CRF backend (right).

a single fully convolutional network (FCN) at test time. Since
such patch-based training methods lack local consistency on
the output, a conditional random field (CRF) was attached as
a backend to provide the final output. The Result is shown in
Fig. 9.

VI. DISCUSSION AND FUTURE DIRECTION

We propose a multimodal fusion method for material recogni-
tion using an off-the-shelf dot-pattern projecting structured light
camera. Leveraging the illumination pattern that consists of both
isotropic and dot-pattern ones, we decompose the captured IR
image and relate different material optical properties (i.e. direct
reflection and subsurface scattering) to them separately. A ge-
ometry modality, that helps disentangle material properties form
geometry variations, is derived from the rendering equation and
calculated based on the depth image obtained from a structured
light camera. Further, together with the texture feature learned
from gray modality, a multimodal fusion model is proposed for
material classification. We collected data by both physical based
rendering and real-world capturing. Using the controlled synthe-
sized dataset, we reveals the connections between IR modalities
and their corresponding materials properties being derived from
the theoretical analyzing. The necessity of introducing geometry
term and explicitly recovering diffusion modality is validated
using the synthesized dataset. And the multimodal fusion per-
formance is evaluated using the captured real-world dataset.
The final fusion-all methods achieves best performance in our
dataset, and an extended segmentation methods is implemented.

Comparing with the state-of-the-art methods, the key prior-
ities of the proposed method are as follows: (1) Superior in
textureless surface recogintion. By using active dot pattern illu-
mination, materials with different subsurface scattering effects
are distinguishable, even for texture-less surfaces. Experiments
on a white subset of captured dataset validate this priority by
showing that model using gray modality only achieves 63.5%
material accuracy, while model using dot-dif-geo achievese
92.4%. (2) All-Day availability. Since IR image is taken under
active illumination emitted by the structured light camera itself,
the fusion model using dot and diffusion modalities would keep
working at night without ambient light. While it is not possible
for methods using RGB image only (e.g. Deep-TEN and DEP).
(3) Multi-dimensional descrimination power. By showing con-
nections among different imaging modalities (dot, diffusion, and

gray) and different material properties (subsurface scattering,
reflecting, and texture), the discrimination power of the fusion
model is addable. The full multimodal model outperforms its
components and other state-of-the-art methods using texture
properties only.

A major limitation is that materials with significant spec-
ularity can not be recognized properly, due to overexposure.
An interesting future direction would be to move from material
classification to inverse rendering. Instead of learning the dis-
criminate feature for direct reflecting, multiple scattering and
texture for classification, a descriptive representation that en-
ables scene generation under different lighting and viewpoints
are more powerful. And we believes such descriptive representa-
tion that only relates to object’s intrinsic material properties can
promote not only the scene understanding in computer vision
domain, but also applications in robotics and computer graphics
domains.
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