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ABSTRACT
Sensing and understanding large-scale dynamic scenes require a high-performance imaging system. Conventional imaging 
systems pursue higher capability by simply increasing the pixel resolution via stitching cameras at the expense of a bulky 
system. Moreover, they strictly follow the feedforward pathway: that is, their pixel-level sensing is independent of semantic 
understanding. Differently, a human visual system owns superiority with both feedforward and feedback pathways: The 
feedforward pathway extracts object representation (referred to as memory engram) from visual inputs, while, in the feedback 
pathway, the associated engram is reactivated to generate hypotheses about an object. Inspired by this, we propose a dual-
pathway imaging mechanism, called engram-driven videography. We start by abstracting the holistic representation of the 
scene, which is associated bidirectionally with local details, driven by an instance-level engram. Technically, the entire system 
works by alternating between the excitation–inhibition and association states. In the former state, pixel-level details become 
dynamically consolidated or inhibited to strengthen the instance-level engram. In the association state, the spatially and 
temporally consistent content becomes synthesized driven by its engram for outstanding videography quality of future scenes. 
The association state serves as the imaging of future scenes by synthesizing spatially and temporally consistent content driven 
by its engram. Results of extensive simulations and experiments demonstrate that the proposed system revolutionizes the 
conventional videography paradigm and shows great potential for videography of large-scale scenes with multi-objects.

1. Introduction

Recent decades have witnessed various developments in videography technology (e.g., from analog to digital, from single 
lens to multi-camera, and from megapixel-level to gigapixel-level). Even though the imaging resolution has significantly 
improved, the basic sensing and understanding pipeline remains unchanged; that is, the conventional videography system 
strictly follows a feedforward pathway by naively accumulating pixel-level information to increase the image resolution and 
progressively abstract global content. Therefore, the image quality of such videography methods is highly limited by the 
physical sampling resolution of the photography. Stitching cameras [1–3] and scanning strategies [4–8] can significantly boost 
the count of physically sampled pixels, especially for gigapixel videography. However, most such videography strategies 
simply fuse spatio-temporal photographic outputs, rather than taking advantage of the inherent instance-level representation 
with spatio-temporal consistency. This leads to high hardware complexity and tremendous data redundancy for the spatio-
temporally dense sampling.

In contrast, a high-level human visual system uses past observations in service of the present or future, with a dual-pathway 
mechanism [9]. Specifically, it extracts and consolidates a memory engram, defined as the representation of a stable and 
semantic memory in the brain [9–12], and subsequently reactivates the associated engram through a feedback pathway for 
memory retrieval. In particular, upon engram formation [9–12], local detailed information is initially transmitted to the 
hippocampus. Then, recurrent associations between the hippocampal–cortical networks gradually strengthen and consolidate 
the cortical engram, and the global semantic information is extracted by the prefrontal cortex (PFC) [9,13]. The PFC then 



discriminates whether the incoming visual information corresponds to a previously stored cortical engram, and determines the 
subsequent procedure of consolidation or inhibition. Taken together, these dynamic and bidirectional information transfers 
realize efficient, robust, and adaptive visual perception and understanding.

Inspired by this, we propose a dual-pathway imaging mechanism denoted “engram-driven videography.” It starts by 
abstracting a holistic representation of a scene, which is bidirectionally associated with the local details, as driven by an 
instance-level engram. Analogically, the visual information is first captured by virtual eyes and pre-processed by the PFC 
module. The PFC module determines which information is already stored in the videographic memory. We call this the 
excitation–inhibition state, where the pixel-level details are dynamically consolidated or inhibited to strengthen the instance-
level engram. Such a dynamic system mimics the human memory mechanism and can be programmed to maximize uncertainty, 
similar to the principle of entropy towards the equilibrium of the system [14,15]. Intuitively, to effectively maintain a dynamic 
videographic memory with a limited size, it is generally encouraged to increase the uncertainty of the memorized content by 
maximizing the entropy. Subsequently, in the association state, a constant-level engram is retrieved to synthesize the spatio-
temporally consistent content for high-performance videography of future scenes. The schematic of engram-driven 
videography is shown in Fig. 1.

Experiments on both computer synthetic and real-world images/videos demonstrate that our engram-driven videography 
can significantly outperform traditional videographic approaches. It can generate high-quality instance-level results with only 
5% high-resolution observations and 95% low-resolution observations. In addition, with the help of the associated engram, we 
can recover the high-resolution details of small instances. We believe that the engram-driven videography will open new 
directions for image/video capturing, understanding, and storage, leading to next-generation visual sensation systems.

Fig. 1. Schematic of engram-driven videography. It consists of an excitation–inhibition state, where the pixel-level details get 
dynamically consolidated or inhibited to strengthen the instance-level engram, and an association state, where the spatially 
and temporally consistent content get synthesized as driven by the engram for high-performance imaging of future scenes.

2. Related work

A large number of studies have considered human visual engrams, super-resolution algorithms, and high-resolution imaging 
systems. These are reviewed in the following subsections.

2.1. Human visual engram

The human brain perceives and processes visual information at two levels [16]. At a low level, the cerebral visual cortex 
processes local visual features such as color, contrast, direction, and motion through feedforward hierarchical structure 
information. In the high-level visual processing, the engram is an indispensable component of the conscious experience. Object 
recognition, in particular, relies on the observer’s previous engram [16].

The term engram was coined by Semon more than 100 years ago, and refers to the representation of a more stable memory 
[9–12]. The prevailing view is that an engram in the brain may change with time [9–12]. Specifically, visual information is 
initially encoded in parallel in hippocampal–cortical engrams, and the recurrent associations between the hippocampal–cortical 
networks gradually strengthen the cortical engram for memory consolidation. Finally, the PFC abstracts the global semantic 
information from the pre-existing cortical engram, and then discriminates whether the incoming visual information 
corresponds to a previously stored cortical engram for the subsequent decision procedure of consolidation or inhibition [13]. 
In information theory, Shannon entropy measures the amount of information held in data; the proposed memory entropy is 
named based on reference to this idea. In particular, in our system, the memory entropy encodes the uncertainty of the instance-
level visual information in the engram. Memory entropy can be regarded as an extension of Shannon entropy in the field of 
imaging and memory, as we do not calculate the entropy directly. Instead, we use the distance between the feature vectors to 



represent the relative entropy change.

2.2. Super-resolution algorithms

Image/video super resolution approaches aim to recover high-resolution details from low-resolution inputs. The most 
common super-resolution method is single image super-resolution (SISR). Early works only used low-level priors such as 
sparsity [17–20] or exemplar patches [21,22], whereas the deep neural network has shown great performance. Kim et al. [23] 
first proposed a three-layer neural network for single-image super-resolution, and further improved it by using a 20-layer deep 
neural network [23], recursive structures [24,25], and a dense structure [26]. However, the mean squared error losses from 
these methods usually led to over-smooth results with no details. Thus, perceptual losses were introduced into image/video 
super-resolution. Johnson et al. [27] first proposed perceptual losses for real-time style transfer and super-resolution by 
combining conventional pixel-wise losses and Visual Geometry Group (VGG)-like feature spaces losses. Ledig et al. [28] 
presented super resolution generative adversarial network (SRGAN), a generative adversarial network for photo-realistic 4× 
natural images at super-resolution.

The performance of SISR is limited, especially under a large resolution gap (> 8×), because the high-frequency details are 
lost during down-sampling and are unrecoverable under general priors. Therefore, reference-based super-resolution (RefSR) 
has been proposed. Boominathan et al. [29] adopted a digital single-lens reflex (DSLR) camera image as a reference, and 
presented a patch-matching-based method for super-resolved low-resolution light field images. Wu et al. [30] improved the 
algorithm by proposing a better patch-matching algorithm combined with dictionary-learning-based reconstruction. Wang et 
al. [31] iterated the patch-matching step to enrich the patch database and improve the reconstruction quality. Zhang et al. [32] 
presented the super-resolution neural texture transfer (SRNTT) to conduct multilevel patch matching in the neural space. The 
methods mentioned above only used the information of local patches. This often led to poor super-resolution results under real 
data from hybrid camera systems, owing to the easily failed patch matching. Therefore, Zheng et al. [33,34] proposed CrossNet 
and CrossNet++, an end-to-end neural network containing a novel two-stage cross-scale warping module to build the 
correspondence between the input and reference. Compared with patch-based approaches, the warping approach can find more 
reliable correspondences for the entire image when the input and reference images are close.

2.3. High-resolution imaging systems

In addition to super-resolution algorithms, researchers have developed powerful imaging systems to increase the resolution. 
Kopf et al. [35] designed a motor-controlled camera mount for static gigapixel image capture. Brady et al. [3] built the world’s 
first gigapixel camera “AWARE2” with a spherical objective lens and 98 micro-optics; it produced a 0.96 gigapixel image in 
a single shot. The objective lenses were carefully designed and manufactured to minimize aberrations [36,37]. In contrast, 
Cossairt et al. [38] used a simple optical design and post-capture deconvolution stage to increase the resolution. Owing to the 
large computational complexity caused by the extremely high resolution, AWARE2 can only capture three frames per minute. 
A similar idea has also been employed in microscope design for gigapixel-level whole-mouse brain imaging [39]. To reduce 
the computational complexity, Yuan et al. [40] proposed multiscale gigapixel videography, which dramatically reduced the 
bandwidth requirement and was capable of handling an 8× resolution gap. Zhang et al. [1] extended this idea to 3D videography 
for virtual reality (VR) applications. However, even with such a strategy, a large number of cameras is still required. The 
spatial redundancy is reduced, whereas the temporal redundancy still exists.

Our new engram imaging system considers both spatial and temporal redundancies. The history inputs are encoded and 
buffered in “memory” as references, and are used to super-resolve further inputs.

3. Method

In this paper, we propose engram-driven videography, including a feedforward pathway for consolidating the interesting 
information of a scene, and a feedback pathway for associating the engram for future content inference and synthesis. Our 
main contribution lies in a high-level neuromorphic imaging system consisting of the functional modules for an engram neural 
circle [9,10,12]. As shown in Figs. 2 and 3, our imaging system consists of three main modules: an instance-level observation 
module, instance-level engram module, and engram processing unit (EPU), corresponding to the hippocampus, cortical 
memory, and PFC in the human brain, respectively. The former two are responsible for low-level and high-level information 
representation, whereas the latter is responsible for information abstraction and control.

In the feedforward pathway (Fig. 2), an entropy equilibrium policy is proposed for consolidating the valid information from 
the low-level observations to the engram and inhibiting meaningless information. In the feedback path (Fig. 3), the pre-
generated engram is associated with new observations and used to synthesize high-quality future content.

3.1. Videographic memory entropy

Similar to the Universe, our brains might be programmed to maximize disorder (similar to the principle of entropy), and our 
memory mechanism could simply be a side effect. Accordingly, we used entropy to quantify the functioning of the 
photographic memory in the human brain (i.e., to characterize the degree of the underlying uncertainty of the instance-level 
engram). Entropy is a term used to describe the progression of a system from order to disorder (i.e., random variables with 



small entropies have a high level of predictability, and hence a low level of uncertainty) [41].
The visual observations abstracted into the engram are defined as a continuous-valued random vector in an N-𝒙 ∈ ℝ𝑁 

dimensional feature space with a probability density function . The photographic memory entropy H(X) is defined as 𝑓(𝒙)
follows, and is used to measure the degree of uncertainty that the information content  comprises. Storing redundant 𝒙
observations in the engram should be avoided, because the visual system is highly robust to predicting one sample from a 
similar one.

                                                                               (1)𝐻(𝑿) = E{ ― log 𝑓(𝒙)}
where E is the expected value operator.

The next question is how to measure the prediction confidence for the neighboring regions in the feature space. Intuitively, 
when two samples x1, x2 get closer in the feature space, it is more reasonable to represent one sample using the other. Therefore, 
we use a multivariate Gaussian  with a mean vector  and covariance matrix , (i.e.,  𝑔𝑖(𝒙) =  𝒩(𝒙;𝝁𝑖,𝜮𝑖) 𝝁𝑖 𝜮𝑖 𝒩(𝒙2;𝒙1,𝜮𝑖)
to represent the prediction confidence of  using . For the case where the memory contains multiple visual observations, 𝒙2 𝒙1

 can be defined as follows:𝑓(𝒙)
                                                          (2)𝑓(𝒙) =  ∑𝑁

𝑖 = 1𝑐𝑖 ⋅ 𝑔𝑖(𝒙) = ∑𝑁
𝑖 = 1𝑐𝑖 ⋅ 𝒩(𝒙;𝝁𝑖,𝜮𝑖)

where  is non-negative weighting coefficients, with . 𝑐𝑖 𝜮𝑖𝑐𝑖 = 1
Similar to the human working memory, which maintains a limited amount of information, the proposed photographic 

memory also has a limited capacity, so that it can be quickly accessed to serve the needs of ongoing videography tasks. 
Accordingly, we propose an engram update mechanism for stimulating the progression of the system from order to disorder. 
Specifically, it is programmed to maximize the information content; simultaneously, the entropy of our videography system 
can only increase.

Here we define two states, the memory state and instantaneous state, as follows:

                                                                (3)𝑓mem(𝒙) =  ∑𝑁 ― 1
𝑖 = 1 𝑐𝑖 ⋅ 𝑔𝑖(𝒙) + 𝑐𝑘 ⋅ 𝑔𝑘(𝒙)

                                                                 (4)𝑓inst(𝒙) =  ∑𝑁 ― 1
𝑖 = 1 𝑐𝑖 ⋅ 𝑔𝑖(𝒙) + 𝑐𝑞 ⋅ 𝑔𝑞(𝒙)

where the kth sample is the most redundant in the memory, and the qth sample represents an incoming query sample.
Intuitively, after the query sample replaces the most useless one in the size-limited memory, and if the system entropy 

increases (i.e., ), the engram update mechanism tends to encourage such an update. In contrast, if the 𝐻mem(𝑿) < 𝐻inst(𝑿)
newly observed information decreases the system entropy (i.e., ), such a process will be inhibited.𝐻mem(𝑿) ≥ 𝐻inst(𝑿)

The key idea for the engram update mechanism is to retain the information that increases the entropy of the photographic 
memory system. For the implementation, the critical part is in evaluating the entropy to guide the engram update strategy. 
Even though the entropy of an N-dimensional Gaussian has a simple closed-form expression, the entropy generally cannot be 
calculated in the closed form for Gaussian mixtures, owing to the logarithm of the sum of exponential functions. Following 
the approximation method [52], the bounds of the mixture entropy are as follows:

                                                                                (5)𝐻BD ≤ 𝐻(𝑿) ≤ 𝐻KL

Here,  and  are defined on Chernoff -divergence and Kullback–Leibler (KL)-divergence, respectively, which 𝐻BD 𝐻KL 𝛼

decrease together with the distance .We can conclude that it is highly likely that the entropy  is min
𝑖,𝑗

‖𝝁𝑖 ― 𝝁𝑗‖  𝐻(𝑿)

proportional to its bounds (i.e.,  and ).𝐻BD 𝐻KL

Therefore, to maintain the equilibrium of the system, we evaluate the instantaneous videographic memory entropy  𝐻inst(𝑿)
for each observation, and compare it with . Eventually, the pixel-level details are dynamically consolidated or 𝐻mem(𝑿)
inhibited, so as to strengthen the instance-level engram in the excitation-inhibition state.

3.2. Feedforward pathway
Fig. 2 illustrates the feedforward pathway for the engram generation. The pixel-level details are first captured by a virtual 

eye (camera) from a large-scale scene, and are pre-processed and saved as instance-level observations (hippocampus in the 
human brain), including foreground dynamic objects and interesting backgrounds. Here, faster region-based convolutional 
neural network (R-CNN) [42] and mask R-CNN [43] are used for bounding box detection and segmentation, respectively. 
Subsequently, the high-level semantic information is extracted from these low-level observations using the encoder. We 
compute the feature vector using five convolutional layers, each with 64 filters of size 5 5. The strides are set to one for the  ×  
first two layers and two for the following three layers, leading to coarse-to-fine multiscale feature maps. The feature vector is 
then computed by concatenating the feature maps. Subsequently, an entropy equilibrium policy is used to decide whether to 
consolidate the information to the engram or to inhibit it.

(1) Virtual eye. Although the human eye has approximately 0.576 gigapixels, it only has very high resolution in the center 
of the field of view (FoV) [44,45], and uses saccadic movements to generate an all-clear wide-FoV image in the brain, leading 
to highly efficient information capturing and integration. Thus, we designed a hybrid camera system to mimic it: A global 
camera with wide-FoV captures low-resolution whole scenes, whereas several local cameras with long-focus lens tracks are 
used to capture interesting details.

(2) Entropy equilibrium. To reach the videographic memory equilibrium, the state with the maximum entropy, we can 
directly maximize the minimal pairwise distance , which is approximately proportional to both the videographic min

𝑖,𝑗
‖𝝁𝑖 ― 𝝁𝑗‖

memory entropy and the instantaneous one . As depicted in Fig. 2, the feature vectors  are 𝐻mem(𝑿) 𝐻inst(𝑿) 𝝁𝑖 = 1,  …, 𝑁



produced by the encoder and transmitted to the videographic memory to update the instance-level engram. Intuitively, if a 
query sample  can increase the videographic memory entropy (i.e., ), the engram update mechanism 𝝁𝑞 𝐻mem(𝑿) < 𝐻inst(𝑿)
tends to encourage such an update. In contrast, if the newly observed information decreases the system entropy, i.e., 𝐻mem(𝑿)

, such a process will be inhibited. Notably, we do not need to calculate the entropy. Instead, as described in the ≥ 𝐻inst(𝑿)
previous section, the minimal pairwise distance  can reflect the relative changes in the entropy. In our min

𝑖,𝑗
‖𝝁𝑖 ― 𝝁𝑗‖

experiment, we used the perceptual embeddings as feature vectors (i.e., ). 𝝁𝑖 = 1, …,  𝑁

Fig. 2. Feedforward pathway for engram generation. The large-scale scene is captured by virtual eyes, and is pre-processed 
and saved in instance-level observations first. After that, the EPU abstracts the low-level information and consolidates it to an 
instance-level engram (excitation state) or inhibits it (inhibition state), based on the entropy equilibrium model.

3.3. Feedback pathway
After generating the engram, we used a designed feedback pathway for the engram-driven videography synthesis (Fig. 3). 

In this approach, the pixel-level details are captured and pre-processed to instance-level observations. In contrast to the 
feedforward pathway focused on engram generation, the instance-level engram helps synthesize high-resolution images from 
low-quality instance-level observations. Technically, an engram association module is trained to retrieve the best-matched 
feature vector from the engram (denoted the “engram vector”). Finally, we concatenate the two feature vectors and use a 
synthesis module to generate high-resolution images [33,34].

Fig. 3. Feedback pathway for engram-driven videography synthesis. An engram association module is used to match the 
feature vector between the observation and engram. These two vectors are then concatenated, and are input to the synthesis 
module.



(1) Engram association. The purpose of engram association is to find the engram vector for generating the best high-
resolution image. This means that the selected engram vector should be close to the feature vector of the observation. Although 
there are already a large number of loss functions both in the low-level pixel domain and high-level semantic domain [27], 
none of them can handle a large resolution/quality gap. Thus, we implement the engram association module using our new 
pairwise loss function, as shown in Fig. 4(a). The feature vector of the observation is generated by the encoder, whereas the 
engram vector is extracted from the high-level engram directly. A perceptual loss is then used to estimate the similarity score. 
This step is applied to all of the engram–input pairs to select the best engram vector.

As it is very difficult to obtain the ground truth of a similarity score, we adopt the pairwise ranking loss to train the network 
[46]. During the generation of the training data, we examine all of the observation–engram pairs and use the peak signal-to-
noise ratio (PSNR) of the synthesized image to rank all of the engram vectors. With this ranking, we train the network by 
comparing two observations–engram pairs using the pairwise ranking loss.

(2) Synthesis module. As illustrated in Fig. 4(b), we recover the high-quality image using a synthesis module. A warping 
module is used to build a dense correspondence between the feature vector and engram vector. We modify the FlowNet 
structure to support multichannel feature maps [47,48]. Finally, we concatenate the two vectors and use a decoder to generate 
the final high-resolution image. The decoder consists of one deconvolutional layer with 64 filters (size 4 × 4, stride 2). The 
loss function L is defined between the decoder output and ground truth, as follows:

                                                                           (6)𝐿 = 𝜌(𝐼𝐻 ― 𝐼gt)
where is the Charbonnier penalty function [49];  denotes the ground truth; and  represents the 𝜌(𝑥) = 𝑥2 + 0.0012 𝐼gt 𝐼𝐻

decoder output.

Fig. 4. Network structure of two sub-modules in the feedback pathway. (a) Association module for engram extraction; (b) 
synthesis module. P: perceptual loss.

4. Experiment
We verified our engram imaging system on both computer synthetic data and real-world data, and showed evident 

improvements for both compared to conventional imaging systems. We also conducted ablation studies to demonstrate the 
effectiveness of each module in our neural network.

4.1. Data preparation

To better verify the effectiveness of our engram imaging system, we used the Unreal Engine to render synthetic data for the 
simulation verification. We also rendered virtual human models on the scene using predefined paths; these were used as the 
simulated interesting instances of the synthetic video. The main camera was set to a 90-degree FoV with 8192 × 8192 30-fps 
resolution. The high-resolution videos were first rendered as a ground truth, and then were down-sampled as a low-resolution 
wide-FoV video. We also cropped a high-resolution small block from the ground truth as a high-resolution small-FoV video 
(mimicking the center of the human eye).

In addition to computer synthetic data, we tested our system on real captured videos. The real-world data were generated 
using the gigapixel video dataset PANDA [50]. As PANDA covers a wide-FoV with an extremely high resolution, we cropped 
a small moving block located on interesting regions or objects as a high-resolution small-FoV video, and down-sampled the 
entire video as a low-resolution wide-FoV video.

4.2. Comparison with conventional imaging system 

Fig. 5 demonstrates the results from our engram imaging system and the conventional imaging system on the computer 
synthetic scene with quantitative evaluation in Table 1. Five persons are covered by the whole wide-FoV video, and the high-
resolution video block is designed to scan all the persons circularly. Each scanning cycle for one person contains one high-
resolution frame and 19 low-resolution frames. The results show that our system can dramatically improve the visual quality. 
In the conventional imaging system, the person becomes blurry, especially the faces, once the local camera moves to other 
persons. In our system, the persons can be kept at high resolution for a long time with the help of the engram. We demonstrate 



faces with different view angles for two representative persons. Our image system can recover the details of the faces and 
hairs, such as the eyes, nose, and mouth.

Fig. 5. Results on synthetic data. Two representative persons are highlighted.

Table 1 
Quantitative comparison with state-of-the-art methods for different sequences.

Sequence Method [7–9] PSNR (dB)
LIIF 31.84
SRNTT 31.87

MDSR 32.19

Synthesis

Ours 32.32

LIIF 31.94
SRNTT 32.12

MDSR 32.17

Real-world

Ours 32.53

LIIF 32.24
SRNTT 32.35

MDSR 33.36

PANDA

Ours 34.29

LIIF: local implicit image function; MDSR: multi-scale deep super-resolution system.

We also tested our results using real-world data (Fig. 6). This video was captured on the campus of the Harbin Institute of 
Technology, Shenzhen. The same scanning strategy was used to generate the data. Several typical frames of two representative 
persons are cropped and shown below the panoramic image. The results show that our system can successfully recover small 
details, such as fingers. Our system can recover different expressions from very low-resolution observations with the help of 
the engram.

In addition to dynamic persons, some static objects also benefit from our imaging system, as shown in Fig. 7. Compared 
with the state-of-the-art SISR, multi-scale deep super-resolution system [51], and SRNTT algorithms [32], our method 
successfully restores the recognizable Chinese characters (red block); this is almost impossible without the engram. The 
quantitative results are presented in Table 1. The quantitative results show that our method achieves a higher PSNR than the 



local implicit image function and SRNTT approaches, especially on the PANDA dataset.

Fig. 6. Results on real-world data (dynamic). Two representative persons are highlighted. The red and blue trajectories denote 
their moving path.

Fig. 7. Results on real-world data (static objects). From top to bottom, low resolution observation, results from state-of-the-art 
SISR, multi-scale deep super-resolution system (MDSR) [51], and RefSR SRNTT algorithms [32], and those from our engram 
imaging system.

4.3. Effectiveness of the engram association module

We also conducted experiments to verify the effectiveness of the engram association module. Two factors were considered: 
the engram buffer size and the association strategy. For the former, we chose 2%, 5%, 10%, and 20% of the video size, and 
tested their performance. For the association strategy, we compared our trained strategy model with a random selection method. 
Fig. 8 illustrates the results of the study. As expected, increasing the engram size benefits the imaging quality, but the 
improvement becomes minor when over 10%. Our trained engram association module shows superior performance to the 



random method, especially when the engram size is small.

Fig. 8. Plots show the effectiveness of our engram association module.

4.4. Ablation study

An ablation study was conducted to verify the effectiveness of the three modules in our engram imaging system. There are 
three important modules in our system, EPU, instance-level observation module, and instance-level engram module, 
corresponding to three regions in the human brain.

(1) Without EPU. The EPU corresponds to the PFC of the human brain. As described in Section 4.2, we tested a random 
method and untrained perceptual distance, but the references were still selected from the same person. Without the EPU, the 
engram association module can hardly find the correct engram vector belonging to the same person or object. Thus, we 
randomly selected the engram vectors from the entire engram. Engram vectors could also be selected from other persons or 
objects.

(2) Without instance-level engram. The instance-level engram module corresponds to the cortical memory in the human 
brain, and is responsible for saving the abstracted and consolidated engram. Without it, we can no longer consolidate the useful 
feature vectors and inhibit meaningless ones. In addition, the instance-level observations can only save short-term content 
(similar to the hippocampus of the human brain). Hence, we used random patches from the entire image frame of nearby 
frames as the engram vectors in this subsection.

(3) Without instance-level observation. Without instance-level observation, the system degrades to a SISR system, so the 
feature vector of the observation itself is used as the engram vector.

Fig. 9 shows the results of the ablation study. As expected, the full system has the highest PSNR and best visual quality 
(distinguishable face). Without any of the three modules, the reconstruction quality drops dramatically, and the faces become 
very blurry.

Fig. 9. Results of ablation studies. w/o: with/without.

5. Conclusions

To achieve high-performance imaging, we proposed an engram-driven videography system with dual feedforward and 
feedback pathways. The feedforward pathway extracts instance-level representations to form the engram used by the feedback 
pathway to synthesize future high-resolution images, similar to that in the human visual system. In the feedforward pathway, 
a videographic entropy equilibrium concept is proposed for deciding whether to consolidate the information to the instance-
level engram or inhibit it, leading to a compact and highly efficient representation. In the feedback pathway, a ranking-based 
engram association module is combined with a feature domain warping and synthesis module to generate spatially and 
temporally consistent high-resolution content. Experiments on both computer synthetic and real-world images/videos 



demonstrate that our engram-driven videography can generate high-quality results using only 5% high-resolution observations 
and 95% low-resolution observations. In addition, with the help of the associated engram, we can recover the high-resolution 
details of small instances. Such techniques can also be used for image/video super-resolution, low-cost gigapixel imaging, 
VR/augmented reality (AR) content representation and compression (foveated rendering), and so on. We believe that the 
engram-driven videography will open new avenues for image/video capturing, understanding, and storage, leading to a next-
generation visual sensation system.
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